Chapter A

Linear Table

with ball screw (KGT) and double linear guide (SSS)

Forces and moments

	SSS
Forces	Dynamic $[\mathrm{N}]$
F_{X}	4000
F_{Y}	2000
F_{Z}	20000
$-F_{Z}$	15000
Moments	Dynamic $[\mathrm{Nm}]$
M_{X}	1000
M_{Y}	$900(1300)$
M_{Z}	$400(580)$

Data in brackets refer to long carriage (220)

Technical Data	SSS
Max. total speed:	$2.50 \mathrm{~m} / \mathrm{s}$
Max. acceleration:	$20 \mathrm{~m} / \mathrm{s}^{2}$
Repeat accuracy:	$\pm 0.03 \mathrm{~mm}(\mathrm{KGT})$
Idle torque:	0.35 Nm

Drive element	KGT
Max. rotation speed:	$3000 \mathrm{~min}^{-1}$
Diameter:	20 mm
Pitch:	$5 / 10 / 20 / 50 \mathrm{~mm}$
Moment of inertia:	$8.50 \cdot 10^{-5} \mathrm{kgm}^{2} / \mathrm{m}$

Calculation of block length of bellows (FB)

(Stroke +17) / $19=$ Number of pleats
Number of pleats • 3.8-17 = Block length of bellows (FB)

Example for stroke of 550 mm :

$(550 \mathrm{~mm}+17) / 19=29.84=>30$ pleats (rounded up) $30 \cdot 3.8-17=97 \mathrm{~mm}$ simple block length (FB)
with ball screw (KGT) and double linear guide (SSS)

Calculation of block length of bellows (FB)

(Stroke + 17) / 28
= Number of pleats
Number of pleats • 4-17 = Block length of bellows (FB)
(Number of pleats• 4-10 with stroke < 250 mm)

Example for stroke of 550 mm :

(550 mm + 17) $/ 28=20.25$ => 21 pleats (rounded up)
21-4-17 = 67 mm simple block length (FB)
with ball screw (KGT) and double linear guide (SSS)

	SSS
Forces	Dynamic [N]
F_{X}	12000
F_{Y}	11000
F_{Z}	95000
$-F_{\mathbf{Z}}$	63000
Moments $^{M_{X}}$	Dynamic $[\mathrm{Nm}]$
$\mathbf{M}_{\mathbf{Y}}$	6300
$\mathbf{M}_{\mathbf{Z}}$	$7500(9500)$

Drive element	KGT
Max. rotation speed:	$3000 \mathrm{~min}^{-1}$
Diameter:	32 mm
Pitch:	$5 / 10 / 20 / 40 \mathrm{~mm}$
Moment of inertia:	$6.45 \cdot 10^{-4} \mathrm{kgm}^{2} / \mathrm{m}$

Calculation of block length of bellows (FB)

(Stroke + 15) / 33
Number of pleats • 4.8-15 = Block length of bellows (FB)

Example for stroke of 550 mm :

($550 \mathrm{~mm}+15$) $/ 33=17.12$ => 18 pleats (rounded up) $18 \cdot 4.8-15=72 \mathrm{~mm}$ simple block length (FB)
with ball screw (KGT) and double linear guide (SSS)

	SSS
Forces	Dynamic $[\mathrm{N}]$
$\mathrm{F}_{\mathbf{X}}$	18000
$\mathbf{F}_{\mathbf{Y}}$	14000
$\mathrm{~F}_{\mathbf{Z}}$	120000
$-\mathrm{F}_{\mathbf{Z}}$	80000
Moments	Dynamic $[\mathrm{Nm}]$
$\mathbf{M}_{\mathbf{X}}$	12000
$\mathbf{M}_{\mathbf{Y}}$	$10000(13000)$
$\mathbf{M}_{\mathbf{Z}}$	$5000(6000)$

Data in brackets refer to long carriage (600)

KGT

Drive element	KGT
Max. rotation speed:	$3000 \mathrm{~min}^{-1}$
Diameter:	40 mm
Pitch:	$5 / 10 / 20 / 40 \mathrm{~mm}$
Moment of inertia:	$1.65 \cdot 10^{-3} \mathrm{kgm}^{2} / \mathrm{m}$

Calculation of block length of bellows (FB)
(Stroke + 15) / 47
Number of pleats • 5.5-15 = Block length of bellows (FB)

Example for stroke of $\mathbf{5 0 0} \mathbf{~ m m}$:

$(500 \mathrm{~mm}+15) / 47=10.96=>11$ pleats (rounded up)
$11 \cdot 5.5-15=46 \mathrm{~mm}$ simple block length (FB)

Profile Alpha-15-B-155

$$
\begin{array}{lr}
\text { Specific mass }[\mathrm{kg} / \mathrm{m}] & 6.6 \\
\text { Surface measure }\left[\mathrm{mm}^{2}\right] & 2446 \\
\text { Geometrical moment of inertia ly }\left[\mathrm{mm}^{4}\right] & 143666 \\
\text { Geometrical moment of inertia } \mathrm{zz}\left[\mathrm{~mm}^{4}\right] & 60433952 \\
\text { Section modulus } \mathrm{Wy}\left[\mathrm{~mm}^{3}\right] & 10413 \\
\text { Section modulus } \mathrm{Wz}\left[\mathrm{~mm}^{3}\right] & 77156
\end{array}
$$

Profile Alpha-20-B-225

Specific mass [kg/m] 12.84
Surface measure [mm^{2}] 4756
Geometrical moment of inertia ly [mm ${ }^{4}$] 382465
Geometrical moment of inertia lz [mm ${ }^{4}$] 23549293
Section modulus Wy [mm ${ }^{3}$]
23316
Section modulus $\mathrm{Wz}\left[\mathrm{mm}^{3}\right.$]
207803

Profile Alpha-30-B-325

Specific mass $[\mathrm{kg} / \mathrm{m}]$	21.24
Surface measure $\left[\mathrm{mm}^{2}\right]$	7868
Geometrical moment of inertia ly $\left[\mathrm{mm}^{4}\right]$	841240
Geometrical moment of inertia $\mathrm{Iz}\left[\mathrm{mm}^{4}\right]$	88022524
Section modulus $\mathrm{Wy}\left[\mathrm{mm}^{3}\right]$	42594
Section modulus $\mathrm{Wz}\left[\mathrm{mm}^{3}\right]$	538754

Profile Alpha-35-B-455

Specific mass [kg/m]
40.21

Surface measure [mm^{2}]
14892
Geometrical moment of inertia ly [mm ${ }^{4}$] 2003907 Geometrical moment of inertia Iz [mm ${ }^{4}$] 297691553 Section modulus Wy [mm^{3}]

85106
Section modulus Wz [mm ${ }^{3}$] 1300745

NS 3/4/6/11 NS 4.1/10

RM 4 / 6

Linear unit	Page	NS	ID No.	$\begin{gathered} \mathrm{I} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{b} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{h} \\ {[\mathrm{~mm}]} \end{gathered}$	g
Alpha 15-B-155	E	4	10559	18	14	6	M8
		4.1	16552	20	13	6	M8
		10	16499	20	13	6	M6
		RM4	15371	13	8	6	M5
	C and D	11	13510	12	10	3,5	M4
Alpha 20-B-225	E	15	19211	25	18	8	M8
		RM6	15372	18	10	8	M6
	C and D	11	13510	12	10	3,5	M4
Alpha 30-B-325	E	6	10561	25	18	8	M10
		RM6	15372	18	10	8	M6
	C and D	11	13510	12	10	3,5	M4
Alpha 35-B-455	E	6	10561	25	18	8	M10
		RM6	15372	18	10	8	M6
	C and D	3	10558	20	12	5	M6

Example:

Alpha 20-B-225-SSS-M-2505-1000-1660-FB-2EMS-0

Product

Size (version)
Drive
S = Spindle

Guide system

S = Rail guide

Model

S = Standard

Type of drive

M = Single nut (ball screw)
MM = Double nut (ball screw)
(TR = Trapezoidal screw - optional)

Drive specifications

Diameter and pitch (ball screw)
(Diameter \times pitch (trapezoidal screw) - optional)
Stroke
Total length
Cover
FB = Bellows

Accessories

EMS / EMB = Mechanical limit switch ($\mathrm{S}=$ Siemens, $\mathrm{B}=$ Balluff) fitted
EO2 / EO10 = Inductive limit switch NC with $2 \mathrm{~m} / 10 \mathrm{~m}$ cable fitted
ES2 / ES10 = Inductive limit switch NO with $2 \mathrm{~m} / 10 \mathrm{~m}$ cable fitted NS © .. (11) = Sliding block (1) .. (11) (see Table on page A5)

Special design

0 = Standard
1 = Special (add specification description)
Additional accessories (separate position)
MGK = Motor mounting and coupling (according to dimension sheet)
URT = Deflection belt drive (according to dimension sheet)
Further drives available on request:
MK or TK (= single nut made of plastic), KK (= double nut made of plastic)

